
Magnetic phase diagrams of manganite-like local-moment systems with Jahn-Teller distortions

M. Stier* and W. Nolting
Festkörpertheorie, Institut für Physik, Humboldt-Universität, 12489 Berlin, Germany

�Received 30 July 2008; revised manuscript received 12 September 2008; published 29 October 2008�

We use an extended two-band Kondo lattice model �KLM� to investigate the occurrence of different
�anti�ferromagnetic phases or phase separation depending on several model parameters. With regard to CMR-
materials such as the manganites we have added a Jahn-Teller term, direct antiferromagnetic coupling, and
Coulomb interaction to the KLM. The electronic properties are self-consistently calculated in an interpolating
self-energy approach with no restriction to classical spins and going beyond mean-field treatments. Further on
we do not have to limit the Hund’s coupling to low or infinite values. Zero-temperature phase diagrams are
presented for large parameter intervals. There are strong influences of the type of Coulomb interaction �intra-
band, interband� and of the important parameters �Hund’s coupling, direct antiferromagnetic exchange, Jahn-
Teller distortion�, especially at intermediate couplings.
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I. INTRODUCTION

The ferromagnetic Kondo lattice model, also known as
double exchange or sd model, is one of the basic models in
solid state physics. It is valid for systems which can be di-
vided into two subsystems. The first one describes the itin-
erant electrons and the other one localized electrons giving
rise to finite permanent magnetic moments. A very prominent
class of such materials are the manganites such as
La1−xSrxMnO3 or La1−xCaxMnO3. Due to a crystal field split-
ting the five 3d spin-up orbitals of the manganese ion are
split into three t2g and two eg orbitals. The t2g spin-up states
are fully occupied and provide the localized spin S= 3

2 and in
the eg states are n=1−x itinerant electrons. But the KLM
alone does not explain the complex phase diagrams of the
manganites1–3 or other effects such as the colossal magne-
toresistance �CMR�.4 Thus other physical effects seem to be
important. This can be the superexchange which takes place
between the t2g electrons and leads to a direct antiferromag-
netic coupling JAF. According to the Jahn-Teller theorem a
crystal with degenerated states breaks its symmetry and
therefore lowers the energy. This results in a splitting of the
eg orbitals. Last but not least the electrons in the narrow eg
bands experience a large Coulomb repulsion.

The large number of competing interactions leads to ver-
satile impacts on the phase diagram.5 Not only that each
effect influences the magnetic order for itself but they also
act on each other. Thus it is necessary to understand these
interactions and their mutual effects in detail. Theoretical
work on this has already been done using different
methods.6–12

The composition of this paper is as follows: In the next
section we will present our complete model. The methods we
have used to solve this model are described in Sec. III. Af-
terwards we will show the numerical results in Sec. IV. There
the magnetic phase diagrams will be presented which are
derived by a comparison of the internal energies of the dif-
ferent phases. Finally we will come to a conclusion in Sec. V.

II. MODEL

We use a two-band ferromagnetic Kondo lattice model as
the main part of our Hamiltonian

HKLM = �
�i,j�,�,�

Tijci��
+ cj�� − JH �

i,�,�
�i� · Si. �1�

The first term describes the next-neighbor hopping of the
itinerant electrons with the hopping matrix Tij and the fer-
mion annihilation �creation� operators ci��

�+� for electrons the
spin � in the band �. An on-site coupling of the spin of the
conduction electrons ��i�� to the spins of the localized elec-
trons �Si� is done via the Hund’s coupling JH. The KLM for
itself has a rich phase diagram13,14 and is often used as the
only part to describe real materials15–17 with some successes.
But special additions are needed to explain special features
or more complex materials.4 One of the most prominent in-
teractions is the Coulomb repulsion represented by the Hub-
bard part

HU = U�
i,��

ni��ni��̄ + �
i,�,��,�

Ũ���ni��ni�̄��, �2�

where ni��=ci��
+ ci�� and a bar above an index means the

opposite band or spin. If we choose Ũ���=0 there is only

intraband repulsion and with Ũ����0 there is also interband
repulsion. Besides this direct electron-electron interaction
there can be a direct coupling of the localized spins

HAF = JAF�
�i,j�

Si · S j . �3�

This interaction is often generated by the superexchange of
electrons. Therefore it is only used as an antiferromagnetic
coupling �JAF�0� in this paper. The last extension is due to
the Jahn-Teller effect �JTE�, which lowers the degeneracy of
electron states by reducing the symmetry of the crystal.
Mostly it is related to 3d orbitals, e.g., the eg orbitals in the
manganites. In a standard notation it is written as

HJT = − g�
i

�Q2iTi
x + Q3iTi

z� +
1

2
kJT�Q2i

2 + Q3i
2 � . �4�

The Q2�3�i are special JT modes and the Ti
z�x� are pseudospin

operators where the band index replaces the spin index of the
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usual spin operators. In our paper we set kJT=1. With this
final part we have the complete Hamiltonian

H = HKLM + HU + HAF + HJT. �5�

III. CALCULATION METHODS

To get magnetic phase diagrams at zero temperature we
have to calculate the internal energy of the differently or-
dered magnetic configurations. We primarily focus on the
ferromagnetic alignment and get the antiferromagnetic
phases by a division of the whole chemical lattice into fer-
romagnetic sublattices.

A. Ferromagnetic phase

For the internal energy we need the quasiparticle density
of states �QDOS� ����E� which we can get from the one-
particle Green’s functions

����E� = −
1

�N
�
k

Im Gk���E� ,

Gk���E� = ��ck��;ck��
+ ��E. �6�

In principle these Green’s functions can be specified by solv-
ing the according equations of motion �EOM�. Unfortunately
there is no known exact analytical solution for this model
thus we need approximation methods. Just looking at the first
two parts in Eq. �5� we can directly use the interpolating
self-energy approach �ISA� �Ref. 18� which has been suc-
cessfully applied for the description of real materials �e.g.,
Refs. 19–21�. This approach fulfills the exactly solvable lim-
iting cases of the KLM �ferromagnetically ordered semicon-
ductor, atomic limit, second order perturbation theory� and
interpolates them by fitting free parameters via a high energy
expansion. Therefore we expect reasonable results even be-
tween the limiting cases and it should hold for all band oc-
cupations, temperatures, and all orders of Hund’s coupling.
Within this approach we get the self-energy

���
ISA�E� = −

1

2
JHX�,−� +

1

4
JH

2

�

a�,−�G�,−�
�0� �E −

1

2
z�JHX�,−��

1 −
1

2
JHG�,−�

�0� �E −
1

2
z�JHX�,−�� �7�

containing

a�� = S�S + 1� − X���X�� + 1� ,

X�� =
	�� − z��Sz�

1 − �n���
,

	�� = �Si
�ci�,−�

+ c��� + z��Si
zni��� ,

G��
�0��E� =

1

N
�
k




E + � − T���k�
.

In addition to the model parameters of Eq. �5� we need 	��

and �n��� which can be self-consistently calculated via the
spectral theorem from the full Green’s function

Gk���E� = 

���

E + � − T���k� − ���
ISA�E�

�8�

via

�n��� = −
1

�N
�
k
�

−

+

dEf−�E�Im Gk���E − �� , �9�

	�� = −
2

�NJ
�
k
�

−

+

dEf−�E�

�	E − T���k�
Im Gk���E − �� , �10�

with the Fermi function f−�E�. The expectation value �Sz� has
to be considered as an external parameter or can be taken
from another method.22 In the upper Green’s function the
Hubbard part of the Hamiltonian is incorporated in the ���

via an effective medium approach. Normally the Green’s
function �8� contains a second part �upper Hubbard band�
which we left out choosing, respectively, U�W ,J or Ũ���

�W ,J. Thus Eq. �8� only describes electrons which have no
Coulomb repulsion partner at their site. The probability that
an electron has no repulsion partner is

��� = 1 − �n�,−��

intraband

− �n−�,�� − �n−�,−��

interband �11�

Since the ��� are in the numerator of Eq. �8� they influence
the spectral weight of the Green’s function but they also act
on the bandwidth in

T���k� = T�
�0� + ���	��k� − T�

�0�
 , �12�

where T�
�0� are the centers of gravity of the bands. For this

reason we have a total spectral weight

� = �
��

��� = � 4 − n intraband

4 − 3n intra + interband,
� �13�

which depends on the electron density n. Especially for n
=1 and interband repulsion we have completely filled bands
��=n=1� and therefore a Mott insulator.

We now have to add the Jahn-Teller Hamiltonian of Eq.
�4�. This can be easily done when we treat the phonon op-
erators classically and use a mean-field approximation.1,23

After performing the mean-field decoupling the phononic
variables Q2i ,Q3i are only coupled to mean values of the
electrons and the ground state is defined by the mean values
�Q2i� , �Q3i� due to the absence of quantum fluctuations. In-
troducing spherical coordinates Q2=Q cos �, Q3=Q sin �
and dressed operators

ci��=−1 = ei�/2�cos
�

2
ci�,3z2−r2 + sin

�

2
ci�,x2−y2� ,
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ci��=+1 = ei�/2�sin
�

2
ci�,3z2−r2 − cos

�

2
ci�,x2−y2� , �14�

we can replace the two modes in Eq. �4�. These operators are
superpositions of 3d orbitals in z direction or in the x-y
plane, respectively. If we also assume translational invari-
ance �i.e., a noncooperative JTE� the JTE is not dependent on
the angle � but only on the magnitude of the distortion Q. In
the ground state this distortion is defined by Q=g�	n� and
we get the new form of the Hamiltonian �4�

HJT = �
k��

�z�g2�	n�ck��
+ ck�� +

1

2
g2�	n�2� , �15�

with z�=�1= �1 and the occupation difference

�	n� = �
�

��n�=−1,�� − �n�=+1,��� , �16�

which has to be calculated self-consistently using Eq. �9�.
Since we want to add this term to the Green’s function �8�
we can neglect the second term in Eq. �15� because it plays
no role in the equation of motion. But we have to keep it in
mind if we calculate the internal energy. The first term means
only a shift of the energy of the two band in different direc-
tions. Hence it can be incorporated in the centers of gravity
T�

�0� in Eq. �12� which have then to be calculated self-
consistently too.

Now we have found a solution for all parts of the Hamil-
tonian �5� which contains electron operators and thus we can
calculate the QDOS ���. The treatment of the superexchange
part �3� will be described in Sec. III C.

B. Antiferromagnetic phases

In Sec. III A we found a solution for the ferromagneti-
cally ordered system. To extend this result to antiferromag-
netic order we divide the whole chemical lattice into ferro-
magnetic sublattices. This means that we assume a Néel state
which is known not to be the ground state due to quantum
fluctuations. But at least for spins S�

1
2 it should be close

enough to the ground state to make reliable conclusions.24,25

For simplicity we only investigate types of antiferromag-
netism which can be divided from a simple cubic lattice into
two sublattices �Fig. 1�. All of the electronic interaction parts
in the Hamiltonian �5� are local thus we have to sum over
one more index � which distinguishes the two sublattices.
The hopping part needs two indices � ,�� since there is of
course a hopping between different sublattices. Neglecting
again HAF we get

H = Hs + �
�

HIA
� , �17�

where HIA
� includes all electronic interaction parts �double

exchange, Hubbard, and JTE� in the magnetic sublattice �
and

Hs = �
�,�,�,��,k

�k
���ck���

+ ck����. �18�

The dispersions �k
��� are the Fourier-transformed hopping in-

tegrals

�k
��� =

1

N
�
�i,j�

Tij
���e−ik�Ri

�−Rj
���. �19�

We only allow hopping to next neighbors in the chemical
lattice. For solving the equation of motion we define the
Green’s function

Gk��
��� �E� = ��ck���;ck����

+ �� . �20�

To get the QDOS ���
� �E� we have to calculate the EOM for

the Gk��
�� �E� which is

EGk��
�� = 
 + ��	ck���,Hs
;ck���

+ �� + ��	ck���,HIA
� 
;ck���

+ �� ,

�21�

=
 + �k
��Gk��

�� + �k
��̄Gk��

�̄� + Mk��
� Gk��

�� . �22�

Here 	. . .
 represents the commutator and �̄ means the oppo-
site sublattice. The higher Green’s function is only affected
by local interactions therefore we can use the sublattice self-
energy ��	ck��� ,HIA

� 
 ;ck���
+ ��=Mk��

� �E�Gk��
�� �E�.26 Thus

Mk��
� �E� is the self-energy of a pure ferromagnetic case com-

parable to Eq. �8�. Now we need the Green’s function
Gk��

�̄� �E� coming from the interlattice hopping. This leads to
a second EOM

EGk��
�̄� = �k

�̄�Gk��
�� + �k

�̄�̄Gk��
�̄� + Mk��

�̄ Gk��
�̄� . �23�

Other simplifications can be done if one considers some
symmetries. The intrasublattice hoppings should be the same
for both sublattices because of the same chemical structure,
i.e., �k

��=�k
�̄�̄= �̃k. This also holds for the intersublattice hop-

pings �k
�̄�=�k

��̄= tk. Since the two sublattices only differ by
the spin direction we can replace the self-energy of the op-
posite sublattice by switching the spin

Mk��
� �E� = Mk��̄

�̄ �E� = Mk���E� . �24�

For the formal self-energy Mk�� we now use the ISA self-
energy plus the terms describing the Jahn-Teller effect and
the Coulomb repulsion such as in Eq. �8�. With Eqs. �22� and
�23� we find the full Green’s function of one ferromagnetic
sublattice

FIG. 1. �Color online� The different types of magnetic order
which are investigated in this paper. Arrows show the spin direc-
tion. A-, C-, and G-type antiferromagnetism, FM/PM
ferro/paramagnetism.
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Gk��
�� �E� = Gk���E� = 


���

E − T̃���k� − ���
ISA�E� − tk2	E − T̃��̄ − ���̄

ISA�E�
−1
, �25�

where T̃���k�=T�
�0�+�����̃k−T�

�0�� similar to Eq. �12�. The
Hubbard interaction is contained in the ��� and the JT split-
ting in the T�

�0�=z��	n�g2 	cf. Eq. �15�
. Although this treat-
ment needed some approximations it fulfills the limiting
cases JH→0 and �Sz�→0. In these cases the paramagnetic
density of states �DOS� is reproduced.

C. Internal energy

To decide which magnetic phase is preferred at a special
parameter set we have to compare the internal energies. In
the KLM it is simply given as

U�

N
=

�HKLM�
N

= �
��
�

−

+

dEf−�E�����E − ��E . �26�

It is a special feature of the KLM that some parts cancel each
other out and the typical ��k� part is missing. The electronic
parts of the Hamiltonian �5� which do not belong to HKLM
are contained in the Green’s functions �8� and �25� via an
effective medium approach. Thus they are already taken into
account by the QDOS ����E�. We just have to add the sec-
ond term of Eq. �15� which had no influence on the EOMs
but on the internal energy. This means for the electronic in-
ternal energy

Uel/N = U�/N +
1

2
g2�	n�2. �27�

The only missing part is the energy of direct coupling be-
tween the localized moments �3�. Since we are in the zero-
temperature regime we use a mean-field decoupling

UAF

N
=

�HAF�
N

= JAF�Sz�2�ap − aap� . �28�

We defined a�a�p as the number of �anti�parallel aligned next-
neighbor spins. This energy is lowest for highest antiferro-
magnetic order �G type, all neighbors are antiparallel
aligned� and vice versa highest for ferromagnetic order. The
whole internal energy is now

U/N = Uel/N + UAF/N . �29�

Ferromagnetic saturation is assumed for the respective �anti-
�ferromagnetic phases. Thus we set �Sz� to the maximum
value which is in the ISA �Ref. 18� �Sz�max=S S+1−n

S+1 . For the
paramagnetic phase there is a vanishing mean value of the
magnetization �Sz�=0 and therefore also no contribution to
the spin’s internal energy �28�.

D. Phase separation

In the regions of phase separation the complete internal
energy can be expressed by the internal energies of the
phases A ,B as

UPS = �1 − y�UA�nA� + yUB�nB� , �30�

with the volume fraction y covered by phase B. Each phase
has its own electron density nA,B and �1−y�nA+ynB=n.
Minimization of UPS according to nA,B leads to conditions for
the boundaries of the phase separated area27

� �UA

�nA
�

n1

= � �UB

�nB
�

n2

. �31�

Between n1 and n2 the phases A and B coexist �cf. Figure 2�.

IV. RESULTS

In this section we will present the numerical results of the
self-consistent calculations. The effect of the different exten-
sions will be studied in detail. All results are given for the
spin S= 3

2 .

A. Coulomb interaction

Basically the Coulomb repulsion can act in three ways. It
can be turned off completely, act only between electrons in
the same band, or between electrons of different bands too.
In our treatment it affects the bandwidth and the spectral
weight of each band. The original values are reduced by the
factor ��� in Eq. �11�. Because these factors are dependent
on the occupation number the main differences occur at high
electron densities. For example at n=1 the bands are quarter-
filled if there is no Coulomb repulsion, one-third filled at
intraband repulsion and completely filled with additional in-
terband repulsion. Ferromagnetism at large couplings JH in
the pure double exchange model is most favored at quarter
fillings.28 This is the maximum filling that can be reached
with an absent Coulomb interaction for densities 0�n�1.
On the other hand there is no ferromagnetism in the DE
model at half-filling where the chemical potential lies be-
tween the bands. A comparable situation in our extended
KLM can only be achieved with intra+interband Coulomb
repulsion at n�0.94 for �anti�ferromagnetic phases �Fig. 3�.

FIG. 2. Schematic view on the Maxwell construction. Between
n1 and n2 the internal energy curves of the phases A and B are
replaced by a straight line representing the occurrence of phase
separation.
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So one can explain basic differences of the phase diagrams in
Fig. 3.

Without Coulomb interaction we have effective quarter
filling at n=1. This means that ferromagnetism is mostly
provided by the itinerant electrons and the energy difference
	Uel=Uel

AFM−Uel
FM has its maximum at this electron density.

With a finite antiferromagnetic coupling JAF antiferromag-
netic phases begin to appear at lower electron densities n
where the 	Uel are small �cf. Figs. 8 and 9�. Thus the total
energy differences are mainly governed by the energy of the
localized spins �28� which is density independent. The
G-type AFM gains most energy from the direct antiferro-
magnetic coupling and exists at the lowest electron densities
�cf. Sec. IV C�.

If we have intraband repulsion antiferromagnetic phases
also appear at higher densities. Because of the reduction of
the total spectral weight we cross the effective quarter filling
and the absolute energy difference of the phases is reduced
again �cf. Fig. 8�. Therefore we get antiferromagnetic phases
if we have a sufficient antiferromagnetic coupling JAF at n
=1 without losing the ferromagnetic phase for n�1. This
was not possible without Coulomb interaction where the fer-
romagnetic phase stays longest at n=1.

When we also add the interband repulsion the spectral
weight will be reduced even more. Thus the maximum abso-
lute electronic energy difference for the ferromagnetic phase
lies at n�0.4 �cf. Fig. 9�. There the ferromagnetic phase
exists longest with increasing JAF �cf. Fig. 3�. As a second
feature the upper subband will be occupied for electron den-
sities n�0.94 �respectively, n�0.91 for the paramagnetic
phase�. Because of the extremely reduced spectral weight the

energy differences become very small and we get many
small regions of different phases for n�0.94 at JAF=0. This
occurrence of many small �anti�ferromagnetic regions could
be a hint for phase separation or spin-canted states. We will
discuss phase separation in Sec. IV E. With finite JAF the
interval 0.94�n�1 is dominated by the energy of the local-
ized spins and that is why the G-type AFM appears.

In general the Coulomb interaction favors ferromagnetic
order. For both types of repulsion the whole phase diagram
would be ferromagnetic if JAF=0 �except at n�0.94 at in-
terband repulsion� even for very low JH and U �Ref. 29�. It
can be argued that the interplay between the two ordering
mechanisms, the Coulomb interaction and the double ex-
change, makes it easier for the system to go to the symmetric
state. But the reduction of the spectral weight and the band-
width lower the absolute energy differences of the itinerant
electron system. Thus one needs a smaller JAF to create an-
tiferromagnetic phases. For this reason the interband Cou-
lomb phase diagram in Fig. 3 has larger regions of antiferro-
magnetic phases compared to the others.

From now on we will only discuss the cases of intra or
intra+interband Coulomb repulsion.

B. Hund’s coupling

In the ferromagnetic KLM the Hund’s coupling JH in
principle favors ferromagnetism. But because of the complex
interplay of a parallel alignment of the localized or itinerant
spins and the hopping there also occur antiferromagnetic
phases. These exist mainly at low and intermediate couplings
JH and at high electron densities.30 This difference between
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FIG. 3. �Color online� Upper line: QDOS and chemical potential �vertical lines� at n=0.94 for ferromagnetic �solid black line� and A-type
antiferromagnetic �dashed red line� order at JH=0.75 eV. Left: No Coulomb repulsion, middle: only intraband repulsion, right: intra
+interband repulsion. All: W=1 eV, JAF=1.7 meV, g=0. Lower line: Phase diagrams in dependence of the Hund’s coupling JH in eV and
the electron density n for different types of magnetic order. For vanishing antiferromagnetic coupling JAF the whole phase diagram for
intraband repulsion would be ferromagnetic and also everything below n�0.94 for intra+interband repulsion.
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low and strong couplings has its origin in the splitting of the
spin-up and spin-down bands �Fig. 4�. The QDOS changes
strongest at low couplings and there are more spin-down
states occupied. At some JH

c the main part of the spin-down
band is shifted above the chemical potential depending on
the electron density n. For strong couplings there is no major
variation of the shape of the QDOS. Only the splitting gets
larger with larger JH. For example this is reflected in the
Curie temperature which cannot be increased by increasing
JH at large couplings.21

Since we have an additional Hubbard part to our basic
KLM we have two supporting mechanisms that create ferro-
magnetism. This means we would have an almost complete
ferromagnetic phase diagram if we would choose JAF=0.
With a finite JAF one can see the emergence of different
antiferromagnetic phases. Figure 4 shows the disparity be-
tween low and strong couplings. For low JH the boundaries
between the phases are dependent on the Hund’s coupling
and the electron density. On the other hand, at strong cou-
plings, these boundaries occur at constant densities nc and
therefore they are almost vertical in the phase diagram. The
phases are now very stable at certain densities n concerning
a change of JH. This stability vanishes with increasing JAF
when the electronic energy differences become too small.

The main effect of JAF happens of course at small differ-
ences of the electron energies �Fig. 9�. That is given, for
intra+interband Coulomb interaction, at small and high n. A
small n means that there are not enough electrons to create
large absolute energy differences. On the other hand a large n
leads to an occupation of the upper subband �cf. Sec. IV A�
which is at higher energies. For n→1 the electronic internal

energies for all phases go to zero and therefore the energy
differences vanish too.

C. Direct antiferromagnetic coupling

In the last sections we investigated the influence of elec-
tronic correlations on the phase diagram. Their interplay
mainly provided ferromagnetism. Thus we have already seen
that we need a finite JAF to get larger regions of antiferro-
magnetic phases. Compared to the former mechanisms the
direct antiferromagnetic coupling has no influence on the
QDOS. At finite temperatures it would of course act on the
magnetization �Sz�. But as we look at zero-temperature be-
havior we have restricted �Sz� to its maximum value. That is
why JAF only influences the energy of the localized spins
�28� and can be examined more separately.

The energy �28� is primarily dependent on the number of
�anti�parallel ordered spins. As the G-type AFM has the most
antiparallel neighbors it gains most from a finite JAF. Vice
versa the ferromagnetic order is most suppressed by it. The
other phases get an intermediate energy change depending on
their structure �cf. Fig. 1�. This energy change competes with
the energy difference of the electronic subsystem. Thus the G
type emerges at low absolute energy differences 	Uel �at n
�0 or n�1 for intra+interband Coulomb repulsion� even
for low JAF. The A and C type typically begin at intermediate
parameters JAF and n where the absolute 	Uel is the largest
�Figs. 5 and 9�. The G type normally is unpreferred by the
itinerant electron system in this region.

It is not always possible to get all phases by varying JAF.
At some parameter sets only ferromagnetism and the G type
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FIG. 4. �Color online� Upper line: QDOS and chemical potential for different Hund’s couplings JH and n=0.9. Solid �black� line
ferromagnetism, dashed �red� line A-type AFM. Lower line: Phase diagrams in dependence of the Hund’s coupling JH in eV and the electron
density n for different types of magnetic order. Left: JAF=0.56 meV, middle: JAF=0.94 meV, right: JAF=1.81 meV. All: intra
+interband Coulomb repulsion W=1 eV, g=0.
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appear, for example. Thus it seems that complex phases dia-
grams, such as those of the manganites, need the interplay of
different interactions. More phases can appear if one has a
finite electron-phonon coupling g �Fig. 5�. As described in
Sec. IV D this coupling has an unequal effect on the particu-
lar phases. The G type can be reached everytime with a
sufficient JAF of course.

D. Jahn-Teller coupling

The Jahn-Teller theorem says that a symmetric crystal
with degenerated states lowers its symmetry so that it re-
duces its energy. Thus all the magnetic phases should lower
their energy when the two orbitals �14� split. But as long as
we calculate the splitting �16� self-consistently it is not clear
which coupling gc is necessary to lift the degeneracy. Figure
6 shows indeed that the critical coupling is not the same for
the single ordering types. For example at low couplings g
�0.3 the G-type AFM appears first in the density interval
0.6�n�0.9 when we use intra+interband Coulomb interac-
tion. On the other hand the A-type AFM shows up first at
large g and low densities. It is not only important which
phase is JT split but also how much a single phase profits
from the splitting. The effect of the JT splitting on the elec-
tronic internal energies can be seen in Fig. 9.

It was mentioned before that the phase diagrams with fi-
nite Coulomb interaction and vanishing JAF are almost
purely ferromagnetic. But with an increasing coupling g the
G type starts at n�0.8 and the crystal gets G-type ordered.
When one increases g further on, the JT splitting starts in the
paramagnetic phase and it is now preferred, even though the
G type is still split, too. With further increase of g other

phases also appear. The energy lowering due to the JT part of
the Hamiltonian �4� depends on the occupation difference
�16�. The maximum value of Eq. �16� is �	n�max=n. Thus the
JT energy is only sufficient to create AFM phase at higher
densities �JAF=0�.

If we use a finite JAF one sees that the single phases
develop at the boundaries of their splitting zones with in-
creasing JAF. That is why the A-type AFM starts at low den-
sities and large g where it is the only split phase. In the
strong coupling region �2g2n�W� the boundaries are not
electron density dependent any more. Thus these boundaries
get vertical similar to the large JH case in Sec. IV B. But the
edges are shifted compared to the nonsplit region at low g.

This different behavior for either no, intermediate, or
strong couplings can also be seen in Fig. 5. At low and
strong g we see no sharp edges in the phase diagrams which
corresponds to slight changes in the electronic energy �27�.
This is because there is either no splitting or at large cou-
plings the bands in all phases are split to their maximum
value 2g2n. For intermediate couplings there are again dif-
ferent critical densities nc for each phase. That is why we get
sharp edges at these values.

E. Phase separation

In contrast to the homogeneous phases presented in the
sections above, it is also possible that we have phase sepa-
rated regions in the phase diagram. To see where a mixture
of two phases can exist we use the method described in Sec.
III D. Indeed we find that there is always a phase-separated
area between two phases. As an example we show in Fig. 7
the regions of phase separation for the three different types

(a) (b) (c)

(d) (f)(e)

FIG. 5. �Color online� Phase diagrams in dependence of the direct antiferromagnetic coupling JAF in eV and the electron density n for
different types of magnetic order. Additionally there is either no, intermediate, or strong electron-phonon coupling g. Upper line: intraband
Coulomb repulsion, left: g=0�eV, middle: g=0.9�eV, right: g=1.0�eV. Lower line: intra+interband Coulomb repulsion, left: g=0�eV,
middle: g=0.6�eV, right: g=1.0�eV. All: W=3 eV, JH=2 eV.
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of Coulomb interaction. If we have no Coulomb interaction
we can get a very broad range of phase separation, especially
at large JH and low n. With the increase of Coulomb repul-
sion partners the phase separation occurs only in smaller in-
tervals around the original boundaries of the two phases.
This has its reason in the gradient of the internal energy
curves. If the gradient is small we get large regions of phase
separations due to the construction we made in Eq. �31�.
Figure 8 shows that we get the smallest gradient at low den-
sities and the least influence of the Coulomb interaction.

It is also possible that complete homogeneous phases
can vanish due to phase separations. For example, the
ferromagnetic phase in Fig. 7 at intra+interband Coulomb

repulsion is, except for a small stripe, covered by phase
separation of ferromagnetism/G-type antiferromagnetism or
ferromagnetism/A-type ferromagnetism, respectively.

The inclusion of phase separation into the other phase
diagrams leads to a qualitatively similar picture. Phase sepa-
ration occurs always between two phases again in a more or
less broad range. This would increase the variety of those
phase diagrams even more and shows the complexity of the
underlying model.

V. SUMMARY

We have investigated the influence of several extensions
of the two-band Kondo lattice model on the zero-temperature
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FIG. 6. �Color online� Phase diagrams in dependence of the electron-phonon coupling g in �eV and the electron density n for different
types of magnetic order. Upper left: Occurrence of the Jahn-Teller splitting. The lines mark the beginning ��	n�� 1

2n� of the splitting.
Remaining three graphs: Favored magnetic phases for upper right: JAF=0 �mind the different n scale�, lower left: JAF=3 meV, and lower
right: JAF=4.7 meV. All: JH=2 eV, W=3 eV. The JTE lowers the energy. Thus new phases develop at the beginning of the JT splitting
with increasing JAF and lead to a complex picture for intermediate couplings g. Values for n�0.94 are left out in the upper line due to
graphical reasons.

(a) (b) (c)

FIG. 7. �Color online� Phase diagrams of Fig. 3 but with the inclusion of phase separation �striped�. The phase separation consists of the
two phases which are adjacent to the left and right sides of the phase separated region. Left: no Coulomb interaction, middle: intraband
Coulomb repulsion, right: intra+interband Coulomb. Zones of phase separation become smaller with the increase of the influence of the
Coulomb interaction.
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magnetic phase diagrams. Those extensions were a Hubbard
term, direct antiferromagnetic coupling of the localized
spins, and electron-phonon coupling due to a Jahn-Teller
part. We used self-consistent calculations, which go beyond
the mean-field level. It has been seen that these extensions
have a large impact on the phase diagrams. Because of the
mutual effect on each other we can get very complex phase
diagrams.

The Coulomb interaction normally leads to a ferromag-
netic state. But due to a lowering of the spectral weight and
bandwidth of the quasiparticle density of states it also lowers
the absolute energy differences of the electronic subsystem.
That is why the occurrence of antiferromagnetic phases
needs a smaller antiferromagnetic coupling JAF at intra
+interband Coulomb interaction compared to the case that
one has intraband repulsion only. Especially because of the
strong Coulomb interaction we used in our work we always
needed a finite JAF to create larger regions of antiferromag-
netic phases. Big values of JAF always provide G-type AFM
but intermediate values can lead to other phases too.

The electron-phonon coupling g can have a very subtle
influence on the magnetic ordering. We have to differ again
between low, strong, and especially intermediate couplings.
At low g there is no splitting of the two bands and for large
g the important band occupation difference �16� is saturated
at �	n�=n. The intermediate couplings show a large variety
of different phases.

Further on we looked on the appearance of phase separa-
tion. We found that there is indeed always a phase separated
region between two homogeneous phases. Depending on the
parameters this region can be very broad or very small. For
special cases a originally homogeneous phase can be com-
pletely covered by phase separation.

To get complex phase diagrams, such as for the mangan-
ites, extension to the ferromagnetic Kondo lattice model

seem to be necessary, especially at large JH and Hubbard U.
Here intermediate values of the direct antiferromagnetic
and/or electron-phonon coupling play an important role to
get a big diversity of magnetic phases. This could mean that
approaches which are only valid in low or strong coupling
regimes are maybe not appropriate to describe such material
classes.

The magnetic order can surely be influenced by other ef-
fects. That could be orbital and charge order as well as the
temperature of course. These extensions would increase the
complexity of the calculations much more and are left for
later work.

APPENDIX: ELECTRONIC ENERGIES

In this section the differences of electronic internal ener-
gies �27� between the �anti�ferromagnetic phases and the
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FIG. 9. �Color online� Top and middle: The electronic internal
energy �27� differences between �anti�ferromagnetic phases and the
paramagnetic phase at g=0, respectively, g=0.6�eV vs the electron
density n. Bottom: The occupation difference �	n� of the JT bands
at intermediate coupling g=0.6�eV. Low absolute energy differ-
ences at lower n lead to a larger influence of the internal energy at
finite JAF in this region. A finite �especially intermediate� JT cou-
pling g results in a drastic change of 	Uel. The JT splitting occurs
at different electron density intervals for the single phases. For the
given parameters the paramagnetic phase is split over the broadest
range of n. Thus �anti�ferromagnetic phases are only possible if
they also gain energy from the JT splitting, at least at higher n.
Parameters: JH=2 eV, JAF=0, W=3 eV, intra+interband Coulomb
repulsion.
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FIG. 8. �Color online� Differences of the electronic internal en-
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single types of Coulomb interaction. The maximum of the absolute
difference occurs at unequal electron densities n. At intra
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is occupied for n�0.91 and for the ferromagnetic phase at n
�0.94. Thus there are larger energy differences in this region ex-
cept for n→1 where the bands are completely filled and the energy
difference goes to zero. Parameters: JH=1.5 eV, W=1 eV, g=0.
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paramagnetic phases are shown. It can be seen in Figs. 8 and
9 that the lowest absolute energy differences occur at low
electron densities n. In our treatment of the internal energy of
the local moment system �28� the whole internal energy
would be equally shifted for all n at a finite JAF. Thus it is
most dominating at lower n for all types of Coulomb inter-
action. At intra+inter band Coulomb repulsion at n�0.91
the paramagnetic phase is always unpreferred but the energy
differences between the �anti�ferromagnetic phases are very
small. Therefore the local moment internal energy is most
important here too. The paramagnetic internal energy is not
affected by a finite JAF, the ferromagnetic phase and the
A-type AFM are shifted to higher energies, and the C- and
G-type AFM to lower ones. Therefore the V type is preferred
in those regions. In contrast to that we have a maximum of
the absolute energy difference at a special nmax. The position
of this maximum is mainly dependent on the type of the

Coulomb interaction. It is at n=1 for the case of vanishing
Hubbard repulsion and gets lower for finite Coulomb inter-
actions. Near the nmax the ferromagnetic phase remains long-
est with increasing JAF.

If we have a finite JT coupling g the JT bands are able to
split. Since this splitting is calculated self-consistently it oc-
curs only for special electron densities depending on g and
the type of the magnetic ordering �cf. Fig. 6�. As the JT
splitting reduces the energy in most cases, magnetic phases
with a finite band occupation difference �	n� are preferred.
Figure 9 shows the occurrence of the splitting for the single
phases. Ferromagnetic order, for example, is only possible
below n�0.8 where the ferromagnetic system gets a finite
�	n� for the given parameters. At lower n the JTE is less
important because the maximum value of �	n�max=n is
lower and the system is less profiting from a splitting.
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